Exercise 3.3.8

- (a) Determine formulas for the even extension of any f(x). Compare to the formula for the even part of f(x).
- (b) Do the same for the odd extension of f(x) and the odd part of f(x).
- (c) Calculate and sketch the four functions of parts (a) and (b) if

$$f(x) = \begin{cases} x & x > 0\\ x^2 & x < 0. \end{cases}$$

Graphically add the even and odd parts of f(x). What occurs? Similarly, add the even and odd extensions. What occurs then?

Solution

Part (a)

For any function f(x), the even part is

Even Part:
$$\frac{f(x) + f(-x)}{2}$$
.

For a function f(x) defined on $0 < x < \infty$, the even extension to the whole line $(-\infty < x < \infty)$ is

Even Extension:
$$\begin{cases} f(x) & x > 0\\ f(-x) & x < 0 \end{cases}$$

Part (b)

For any function f(x), the odd part is

Odd Part:
$$\frac{f(x) - f(-x)}{2}$$
.

For a function f(x) defined on $0 < x < \infty$, the odd extension to the whole line is

Odd Extension:
$$\begin{cases} f(x) & x > 0\\ -f(-x) & x < 0 \end{cases}$$

Part (c)

For this prescribed function,

Even Part:
$$\begin{cases} \frac{1}{2}[x + (-x)^2] & x > 0\\ \frac{1}{2}[x^2 + (-x)] & x < 0 \end{cases}$$
Even Extension:
$$\begin{cases} x & x > 0\\ -x & x < 0 \end{cases}$$
Odd Part:
$$\begin{cases} \frac{1}{2}[x - (-x)^2] & x > 0\\ \frac{1}{2}[x^2 - (-x)] & x < 0 \end{cases}$$
Odd Extension:
$$\begin{cases} x & x > 0\\ -x & x < 0 \end{cases}$$

www.stemjock.com

Simplifying these expressions gives

Even Part:
$$\begin{cases}
 \frac{1}{2}(x+x^2) & x > 0 \\
 \frac{1}{2}(x^2-x) & x < 0
 \end{cases}$$
Even Extension: $\begin{cases}
 x & x > 0 \\
 -x & x < 0
 \end{cases}$ Odd Part: $\begin{cases}
 \frac{1}{2}(x-x^2) & x > 0 \\
 \frac{1}{2}(x^2+x) & x < 0
 \end{cases}$ Odd Extension: $\begin{cases}
 x & x > 0 \\
 -x & x < 0
 \end{cases}$

Adding the even and odd parts results in the original function,

$$\begin{cases} x & x > 0 \\ x^2 & x < 0 \end{cases},$$

while adding the even and odd extensions results in

$$\begin{cases} 2x \quad x > 0\\ 0 \quad x < 0 \end{cases}.$$

