Exercise 3.3.8

(a) Determine formulas for the even extension of any $f(x)$. Compare to the formula for the even part of $f(x)$.
(b) Do the same for the odd extension of $f(x)$ and the odd part of $f(x)$.
(c) Calculate and sketch the four functions of parts (a) and (b) if

$$
f(x)= \begin{cases}x & x>0 \\ x^{2} & x<0\end{cases}
$$

Graphically add the even and odd parts of $f(x)$. What occurs? Similarly, add the even and odd extensions. What occurs then?

Solution

Part (a)

For any function $f(x)$, the even part is

$$
\text { Even Part: } \frac{f(x)+f(-x)}{2}
$$

For a function $f(x)$ defined on $0<x<\infty$, the even extension to the whole line $(-\infty<x<\infty)$ is

$$
\text { Even Extension: }\left\{\begin{array}{ll}
f(x) & x>0 \\
f(-x) & x<0
\end{array}\right. \text {. }
$$

Part (b)
For any function $f(x)$, the odd part is

$$
\text { Odd Part: } \frac{f(x)-f(-x)}{2}
$$

For a function $f(x)$ defined on $0<x<\infty$, the odd extension to the whole line is

$$
\text { Odd Extension: } \begin{cases}f(x) & x>0 \\ -f(-x) & x<0\end{cases}
$$

Part (c)

For this prescribed function,

$$
\begin{array}{lll}
\text { Even Part: } & \begin{cases}\frac{1}{2}\left[x+(-x)^{2}\right] & x>0 \\
\frac{1}{2}\left[x^{2}+(-x)\right] & x<0\end{cases} & \text { Even Extension: }
\end{array}\left\{\begin{array}{ll}
x & x>0 \\
-x & x<0
\end{array}\right\}
$$

Simplifying these expressions gives

$$
\begin{array}{lll}
\text { Even Part: } & \begin{cases}\frac{1}{2}\left(x+x^{2}\right) & x>0 \\
\frac{1}{2}\left(x^{2}-x\right) & x<0\end{cases} & \text { Even Extension: }
\end{array}\left\{\begin{array}{ll}
x & x>0 \\
-x & x<0
\end{array}\right\}
$$

Adding the even and odd parts results in the original function,

$$
\left\{\begin{array}{ll}
x & x>0 \\
x^{2} & x<0
\end{array},\right.
$$

while adding the even and odd extensions results in

$$
\left\{\begin{array}{ll}
2 x & x>0 \\
0 & x<0
\end{array}\right. \text {. }
$$

